

Hearing Loss & Cognitive Decline: Clinical Implications & Impact of Hearing Rehabilitation

Michael S. Harris, MD

Associate Professor Medical College of Wisconsin Department of Otolaryngology & Communication Sciences

Chief, Division of Otology, Neurotology, & Skull Base Surgery

Medical Director, Koss Cochlear Implant Program & Clement J. Zablocki VA Cochlear Implant Program

Disclosures

Support:

- 1. NIH/National Institute on Deafness & Other Communication Disorders (1R21DC018871-01A1)
- 2. Cochlear Corp Investigator-Initiated Research Grant
- 3. Medical College of Wisconsin (MCW)
 - a. Imagine More Award for Dementia Research
 - b. Research Affairs Committee New Faculty Pilot Grant
 - c. Radiation Oncology Committee to Advance Knowledge & Education Through Clinical Trials (ROCKET), MCW Radiation Oncology Research Program

Images used in this lecture were obtained from the presenter's collection, various textbooks, peer-reviewed journals, & internet websites. Use is for educational purposes only.

Cognitive Decline & Dementia

- The pace of population aging is increasing
- Dementia expected to triple worldwide by 2050

• Estimated **population attributable fraction (PAF)** = percentage reduction in new cases over a given time if that risk factor were eliminated

 Assuming causality, global incidence of dementia could theoretically be decreased by 9% if hearing loss were eliminated Preventable & modifiable

	Relative risk for	Prevalence	Communality	PAF	Weighted PAF [*]
	dementia (95% CI)				
Early life (age <18 years)					
Less education (none or	1.6 (1.26-2.01)	40.0%	64.6%	19.1%	7.5%
primary school only)					
Midlife (age 45–65 years)					
Hypertension	1.6 (1.16-2.24)	8-9 %	57.3%	5.1%	2.0%
Obesity	1.6 (1.34–1.92)	3.4%	60-4%	2 ∙0 %	0.8%
Hearing loss	1.9 (1.38–2.73)	31.7%	46.1%	23 ·0 %	9.1%
Later life (age ≻65 years)					
Smoking	1.6 (1.15-2.20)	27-4%	51.1%	13 · 9%	5.5%
Depression	1.9 (1.55–2.33)	13.2%	58.6%	10 .1%	4.0%
Physical inactivity	1.4 (1.16–1.67)	17.7%	26.6%	<mark>6.</mark> 5%	2.6%
Social isolation	1.6 (1.32–1.85)	11.0%	45.9%	5.9%	2.3%
Diabetes	1.5 (1.33-1.79)	6.4%	70.3%	3.2%	1.2%

Table 1. Potentially modifiable risk factors for dementia

PAF=population attributable fraction.

Moberly, Doerfer, & Harris, Laryngoscope, 2019

Information (Signal) Degradation Hypothesis:

Implies reversibility

- 1. Information degradation hypothesis
- 2. Sensory deprivation hypothesis
- 3. Cognitive load on perception hypothesis
- 4. Common cause hypothesis

Moberly, Doerfer, & Harris, Laryngoscope, 2019

- 1. Information degradation hypothesis
- 2. Sensory deprivation hypothesis
- 3. Cognitive load on perception hypothesis
- 4. Common cause hypothesis

knowledge changing life

Common Cause Hypothesis:

Implies permanent cognitive decline

Hearing Loss & Cognitive Decline Can functional neuroimaging tell us about mechanism & impact of cochlear implantation on brain function?

Ongoing study...

Michael S. Harris, MD¹; David Cao²; Gennadiy Gurariy, PhD³ Sarah Mleziva¹, Samiah Ziadeh³; Shannon Walsh, AuD¹; Kristin Kozlowski, AuD¹; Adam S. Greenberg, PhD³

¹Department of Otolaryngology & Communication Science, Medical College of Wisconsin

²School of Medicine, Medical College of Wisconsin

³Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University

Support:

Cochlear Corp Investigator-Initiated Research Grant MCW Imagine More Award for Dementia Research MCW Research Affairs Committee New Faculty Pilot Grant

- Aim 1 BEHAVIORAL measurement <u>nonauditory</u> <u>attentional selection</u> in older adults (72 years) (1) without hearing loss, (2) with hearing loss but without treatment, and (3) with hearing rehabilitation using a cochlear implant
- Aim 2 FUNCTIONAL NEUROIMAGING (fMRI). Characterize changes in <u>brain function and network</u> <u>dynamics</u> associated with hearing loss & hearing rehabilitation
 - Measure Blood Oxygen Level Dependent (BOLD) signals during attentional tasks

• <u>Hypothesis</u>: disambiguation of auditory signals (use of CI) will relieve cognitive resources diverted away—demonstrating reversibility of cognitive deficits in support of the <u>Information</u> <u>Degradation Hypothesis</u>

Construct of Attention

-3-network model corresponding to 3 key attentional subprocesses Posner & Petersen, 1990

- Alerting
- Orienting
- Distractor filtering

Attentional Network Test (ANT)

- Non-verbal/non-auditory assessment of these attentional control factors in the <u>visual</u> <u>domain</u>
- Stable, robust, and reliable, & minimal practice effects *Fan et al., 2002; 2009*

<u>Non-Verbal</u> Working Memory

- -N-Back Task
- Presentation of sequential images allowing memory load to be increased
- Participants perform 3 runs of the N-back task in which memory load is increased from N=1 to N=3

Behavioral Data (ANT)

Between Groups

1. Normal Hearing (n = 11; mean age 69 years) Approximately age-matched controls

2. Hearing Loss No CI (Pre-CI) (n = 12; mean age 73 years)

Adults (\geq 65 years) with <u>undertreated/untreated</u> postlingually acquired sensorineural hearing loss who qualify for cochlear implants

3. Hearing Loss + CI (n = 10; mean age 73 years)

Adults (≥ 65 years) with post-lingual sensorineural hearing loss with a cochlear implant within 1-year of surgery ("learning phase")

- Pattern of results different across three groups
- Significant differences in alerting between Pre-CI & Control

knowledge changing life

Attentional

Network

Test (ANT)

Post-CI & Controls engage attentional components *in concert* differently than Pre-CI

Attentional Network Test (ANT)

fMRI Data (Nback)

Between Groups

1. Normal Hearing Approximately age-matched controls

2. Hearing Loss No CI (pre-CI)

Adults (\geq 65 years) with <u>undertreated/untreated</u> post-lingually acquired sensorineural hearing loss who qualify for cochlear implants

3. Hearing Loss + CI

Adults (≥ 65 years) with post-lingual sensorineural hearing loss with a cochlear implant within 1-year of surgery ("learning phase")

MEDICAL COLLEGE. OF WISCONSIN

knowledge changing life

What to Tell Your Patients

- Both age-related hearing loss & cognitive decline are of increasing concern with the aging population
- Age-related hearing loss does appear to be independently associated with increased risk of cognitive decline
- The mechanism is not substantiated
- The role of hearing rehabilitation to reverse, slow, or prevent cognitive decline is unclear, but promising
- Attentional resources are utilized differently in those with hearing loss with and without hearing loss treatment.
- Absence of behavioral differences may be attributed to compensatory mechanisms within the parietal cortex (IPS)

Oticon – Hearing Aid Manufacturer

THANK YOU!

DEPARTMENT OF BIOMEDICAL ENGINEERING

Kristin Kozlowski, AuD¹ Shannon Walsh, AuD¹ Sarah Mleziva¹ David Cao² Gennadiy Gurariy, PhD³ Samiah Ziadeh³ Adam S. Greenberg, PhD³

¹Department of Otolaryngology & Communication Science, Medical College of Wisconsin

²School of Medicine, Medical College of Wisconsin

³Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University

Grant Support:

Cochlear Corp Investigator-Initiated Research Grant MCW Imagine More Award for Dementia Research MCW Research Affairs Committee New Faculty Pilot Grant

SENSORY NEUROSCIENCE • ATTENTION • PERCEPTION

